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Predicting climate impacts on marine 
food-webs and the biological pump 

Q: How does energy transfer up the marine food chain? 

Bar-On et al. 2018, PNAS 

inverted pyramid 

Voronoi 
diagram 



Universal ecosystem-level trophic structure? 

How does the 
marine ‘inverted 
pyramid’ arise? 

Hatton et al. 2015 Science 

Zo
op

la
nk

to
n 

(g
/m

^3
) 

Phytoplankton (g/m^3) 

“Sublinear size scaling” 



Marine Biogeochemistry 
Library (MARBL) 

• Modular ocean biogeochemistry model 
• Default: 3 phytoplankton and 1 zooplankton 
• Now enables flexible number of plankton groups 

9 phytoplankton 

6 zooplankton 

Size-based Plankton 
Ecological Traits model 

(SPECTRA) 



Size as a ‘master trait’ for describing  
marine organisms 

  

  

Brown et al. 2004 

Physiological processes scale with mass 

Kleiber’s law 
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Allometric scalings 

NASA EOL 

Phytoplankton Zooplankton 

Max photosynthesis rate 
Initial growth-irradiance slope 
Chl a:N ratio 
Fe:C ratio 
P:C ratio 
Half-saturation constants: 
    NO3 

    NH4
+ 

    PO4
3- 

    DOP 
    SiO3 

    Fe 

Max grazing rate 
Grazing half-saturation constant 
Respiration rate 
Mortality rate 
Fraction of losses to detritus 
 
Optimal predator-prey size ratio = 10:1 

Fe
ed

in
g 

ke
rn

el
 v

al
ue

 

Predator to Prey size ratio 

Feeding 
kernel width 



Model validation – chlorophyll 
NPP: 
48 Pg C y-1 

Model: 
CORE II forced 
Ocean-Ice case 
1-degree POP + CICE 
62-year hindcast 
Results shown are years 
32-62 (1981-2011) 

BEC Model – Obs (SeaWiFS) SPECTRA Model – Obs (SeaWiFS) 
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Model 
improvement 

of 40-50% 



Modeled predator-prey biomass scaling 
Slope (k) = 0.58 

1:1 line 

Slope (k) = 0.28 
Slope (k) = 1.13 

HYPOTHESES: 

1. Zooplankton mean size 
increases at high 
phytoplankton biomass. 

2. Productivity of large 
zooplankton increases 
relative to small zooplankton 
due to large-sized 
phytoplankton food. 
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Why does trophic biomass scaling increase 
at high biomass? 

Slope = 0.28 

Slope = 1.13 

1. Zooplankton mean size 
increases at high 
phytoplankton biomass. 

2. Productivity of large 
zooplankton increases 
relative to small zooplankton 
due to large-sized 
phytoplankton food. 

X 

Mean Body Mass 



Slope = 0.28 

Slope = 1.13 

Why does trophic biomass scaling increase 
at high biomass? 

M
esozoo. / M

icrozoo. Productivity 

1. Zooplankton mean size 
increases at high 
phytoplankton biomass. 

2. Productivity of large 
zooplankton increases 
relative to small zooplankton 
due to large-sized 
phytoplankton food. 

X 

Mesozooplankton productivity 
increases with large diatom 
abundance 

Mesozooplankton / Microzooplankton Productivity 

✓ 



Equatorial and  
lower latitude regions Subpolar regions 

• Food web lengthens as  
phytoplankton biomass increases 

• Spatially heterogeneous 
• Trophic links are leaky 

M
esozoo. / M

icrozoo. Productivity 

• Trophic transfer efficiency does not change 
with phytoplankton biomass 

• Strong bottom-up control  
(tightly coupled food webs) 

• High benthic fluxes 
• Less large mesozooplankton (why?) P Z1 Z2 Z3 

Spatial Patterns 



Equatorial and  
lower latitude regions Subpolar regions 

Temporal Patterns 

Phyto Zoo 



• Spatially heterogeneous 
• Long food chains 
• Supports low densities of  

highly mobile species (e.g., tunas)? 

• Seasonal dynamics dominate 
• Strongly coupled trophic levels 
• Supports opportunistic,  

less mobile species (e.g., groundfish)? 
 
 

mZ/µZ 

Equatorial and  
lower latitude regions Subpolar regions 



Summary 
• A size-structured plankton model is a parsimonious method of 

adding ecosystem complexity 
• Allometric relationships are key 
• Enables future integration with size-resolved detritus groups 
• Potential for development into a continuous size-based model 

• Predator-prey biomass scaling for examining food-web shifts 
• Average scaling is sublinear over the global ocean 
• High latitude areas can have super-linear scaling 
• Sublinear areas: food web lengthens as biomass increases 
• Time and space variations on dominant processes controlling trophic biomass 

scaling 

• How does the predator-prey biomass scaling extend to higher 
trophic levels? 
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Comments?  
Email: jluo@ucar.edu 
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